Electric-field dependence of the effective dielectric constant in graphene.

نویسندگان

  • Elton J G Santos
  • Efthimios Kaxiras
چکیده

The dielectric constant of a material is one of the fundamental features used to characterize its electrostatic properties such as capacitance, charge screening, and energy storage capability. Graphene is a material with unique behavior due to its gapless electronic structure and linear dispersion near the Fermi level, which can lead to a tunable band gap in bilayer and trilayer graphene, a superconducting-insulating transition in hybrid systems driven by electric fields, and gate-controlled surface plasmons. All of these results suggest a strong interplay between graphene properties and external electric fields. Here we address the issue of the effective dielectric constant (ε) in N-layer graphene subjected to out-of-plane (E(ext)(⊥)) and in-plane (E(ext)(||)) external electric fields. The value of ε has attracted interest due to contradictory reports from theoretical and experimental studies. Through extensive first-principles electronic structure calculations, including van der Waals interactions, we show that both the out-of-plane (ε(⊥)) and the in-plane (ε(||)) dielectric constants depend on the value of applied field. For example, ε(⊥) and ε(||) are nearly constant (~3 and ~1.8, respectively) at low fields (E(ext) < 0.01 V/Å) but increase at higher fields to values that are dependent on the system size. The increase of the external field perpendicular to the graphene layers beyond a critical value can drive the system to a unstable state where the graphene layers are decoupled and can be easily separated. The observed dependence of ε(⊥) and ε(||) on the external field is due to charge polarization driven by the bias. Our results point to a promising way of understanding and controlling the screening properties of few-layer graphene through external electric fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Nanoscale Probing of Interaction in Atomically Thin Layered Materials

We combine conductive atomic force microscopy (CAFM) and molecular dynamics (MD) simulations to reveal the interaction of atomically thin layered materials (ATLMs) down to nanoscale lateral dimension. The setup also allows quantifying, for the first time, the effect of layer number and electric field on the dielectric constant of ATLMs with few-layer down to monolayer thickness. Our CAFM-assist...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

Electric-Field-Induced Triplet to Singlet Transition in Size-2 Trigonal Zigzag Graphene Nanoflake

Using Hartree-Fock Su-Sheriffer-Heeger (HF-SSH) model, we have studied the dependence of the energies of the ground (magnetic triplet state) and the first exited (nonmagnetic singlet state) states of the size-2 trigonal zigzag graphene nanoflake (size-2 NF) on the intensity of an external in plane static electric field at zero temperature. We identify a transition from the magnetic triplet stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2013